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ABSTRACT. 
An eigenspace assignment approach to the design of parameter insensitive control laws for 

linear multivariable systems is presented. The control design scheme utilizes flexibility in 
eigenvector assignments to reduce control system sensitivity to changes in system parameters. The 
methods involve use of the singular value decomposition to provide an exact description of allowable 
eigenvectors in terms of a minimum number of design parameters. In a design example, the 
methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this 
example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are 
used to enhance the performance of a stabilizing minimum energy/ linear quadratic regulator 
controller and associated observer. Results indicate that the methods provide feedback control laws 
that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure. 
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AN APPLICATION OF EIGENSPACE METHODS 
TO SYMMETRIC FLUTTER SUPPRESSION 

1. INTRODUCTION. 
A common problem in flight control applications is to design feedback and observer gain 

matrices so that the system remains stable and satisifies given performance requirements over a range 
of flight conditions. A basic approach is to fix a flight condition as a design point and to synthesize 
gain matrices so that stability and performance requirements are met at the design point.Nearby 
flight conditions yield evalution models. If performance requirements are not met at the evaluation 
points, one returns to the design model and adjusts the existing design to meet more stringent 
requirements. In such cases it frequently occurs that certain variables used for per€ormance 
evaluation are more sensitive to changes in the design point than others and a reduction in sensitivity 
can be explicitly considered in the design process. In this paper eigenspace methods are presented 
for the design of parameter insensitive control laws. The methods are applied to the problem of 
symmetric flutter suppression in an aeroelastic vehicle. 

eigenvectors underlies the appeal of eigenspace methods for control system design. The basic 
freedoms and limitations of eigenstructure assigment methods by full state feedback or output 
feedback are presented in the papers by Moore [12], by Srinathkumar [14], by Andry, Shapiro and 
Chung [2], and by Kautsky, Nichols and Van Dooren [7]. The utility of eigenstructure assignment 
methods in observer designs is discussed in the work of Kazerooni and Houpt [8]. In these methods 
feedback and observer gain matrices are determined to yield a desired eigenstructure. Stability and 
transmission considerations motivate the location of desired eigenvalues,whereas the ability to shape 
the system response [2,12], to enhance system performance [ 51, to reduce system sensitivity [lS], 
or to design robust control laws [7,8] motivates the selection of desired eigenvectors. 

consideration eigenvalue sensitivity to plant parameter variations and performance constraints. The 
procedure is formulated as a constrained optimization problem in Section 2 along with a description 
of eigenspace assignment methods for the determination of feedback and observer gain matrices. 
Formulation of the procedure as a constrained optimization problem allows explicit consideration of 
costs associatied with control effort in the design procedure. Eigenvalue sensitivity can be expressed 
explicitly in terms of closed loop eigenvectors and, consequently, the freedom available in assigning 
eigenvectors can be directly related to sensitivity reduction. In Section 2, the singular value 
decomposition [9] is used to provide a basis for the attainable eigenvectors associated with a desired 
eigenvalue. Thus an explicit parameterization/coordinatization of the attainable eigenvectors is 
obtained. An alternate algorithm for computing a basis for the attainable eigenvectors was presented 
in the work of Porter and D'Azzo [ 131 and, more recently, by Kautsky, Nichols and Van Dooren 

The ability to shape the fundamental modes of a system by modifying selected eigenvalues and 
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iii) wi = K vi for i = 1, ..., n 

control designer to specify 
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[7]. Some eigenvector assignment procedures require th desired 
eigenvector and the nearest attainable eigenvector is then computed [2], [5]. The approach 
advocated, here, involves a precise description of the attainable eigenvectors and results in the 
display of the design freedom in terms of a minimum number of independent parameters. 

A flutter suppresssiodgust load alleviation problem is formulated in Section 3 and the 
results of an extensive design example are presented in Section 4. In this example, the flutter mode 
is sensitive to changes in dynmaic pressure and eigenspace methods are used to enhance the 
performance properties of a LQR/Lm designed compensator. Results indicate that the methods 
provide feedback control laws which make the stabllity of the nominal closed loop system 
insensitive to changes in dynamic pressure. 

2. PARAMETER INSENSITIVE CONTROL SYSTEM DESIGN. 
In this section a procedure based upon eigenstructure assignment methods for the design of 

parameter insensitive control laws is presented. A review of eigenstructure assignment methods 
useful in the design of full state feedback control laws and state observers is included. In this paper 
the singular value decomposition is used to provide a coordinatization of the allowable eigenvectors, 
which arise in full state feedback designs. These coordinates become the design parameters for 
sensitivity reduction. 
Eigenstructure a ~ -1. Consider the linear system 

dx/dt = A x  + B u  + T q  (1) 

where A, B, and r denote matrices of appropriate dimensions and x, u, q denote state, control, and 

disturbance variables respectively. Assuming full state feedback control, i. e. u = -Kx , the 
eigenvalues of A - BK can be arbitrarily assigned through a proper choice of the gain matrix K if 
and only if the system (1) is completely controllable. If (1) is uncontrollable then uncontrollable 
eigenvalues cannot be altered by a state variable feedback control law u = -Kx. 

The ability to assign eigenvalues and eigenvectors through state variable feedback control laws 
is summarized as follows [3,7, 12, 141. Let A = ( hi : i=l, ..., n 1 be a self conjugate set of 
distinct complex numbers. Here A denotes a set of desired closed loop eigenvalues and must include 
all uncontrollable eigenvalues of the system. There exists a feedback gain matrix K such that (A - 
BK) vi = hi vi fori = 1, ..., n if and only if - - 

i) {vi }i=l,n are linearly independent in c" and vi = vj if hi = h j 

ii) [ :] belongs to the Ker [ hi I - A, B] for i = 1, ..., n 
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In this case the feedback gain matrix K must satisfy K = [ w1, ..., Wn 3 [ VI, ..., ~ n ] -  1 . 
Thus h is an eigenvalue for A - BK with corresponding eigenvector v provided 

If W denotes a matrix whose columns form a basis for the Ker [ h I - A, B 3 then 

where c denotes a vector whose components are the coordinates of [ VI, (Kv)' 3' with respect to the 
columns of W. Thus (3) provides a parameterization or coordinatization of the allowable 
eigenvectors. If h is a controllable eigenvalue it may be shown that the dimension of 
Ker [ h I - A, B 3 equals the number of columns of B and the columns of W1, see (3) above, are 
independent if B is of full rank [ 123. The singular value decomposition [7,93, SVD, provides an 
efficient numerical method to compute an orthonormal basis for Ker [ h I - A, B 3 . If the SVD of [ 

h I - A, B ] is 

[ X I  - A,B1 = [U,,U,I [ ;] [V , ,VJ  (4) 

then the columns of W = V2 form an orthonormal basis for the Ker [ h I - A, B 3 . 
Equation (3) provides a parameterization or coordinatization of the attainable eigenvectors 

associated with h and, consequently, completely describes the freedom in assigning a particular 
eigenvector. One should note that the number of free parameters describing an atttainable 
eigenvector equals the rank( W1) I dim Ker [ h I - A, B 3 . These free parameters will be utilized 
as control design parameters in the application to follow. Further characterizations of the attainable 
eigenvectors and the number of degrees of freedom in eigenvector assignment are presented in the 
work of Kautsky, Nichols and Van Dooren [7]. 

In this design example the coordinates of an attainable eigenvector are modified to obtain 
feedback control laws which are insensitive to changes in a model parameter. The approach requires 
that derivatives of eigenvalues with respect to system parameters be computed. It is well known [7, 
101 that if h is a distinct eigenvalue of a matrix Q(q), depending on a parameter q, and u', v are left 
and right eigenvectors corresponding to h , respectively, then 

The dependence of this sensitivity on the eigenvectors ut and v indicates a potential reduction in 
sensitivity by a suitable choice of eigenvectors. Bounds on eigenvalue sensitivities are directly 
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related to the condition number of the modal matrix for the closed loop systems and are discussed 
in [7]. 
Eigenstructure assignment 
presented a procedure for loop transfer recovery based upon eigenstructure assignment of observers. 
This procedure for observer design will be used in the example to follow. These same methods have 
been previously applied in the design of an active flutter suppression system by Garrard, Liebst, and 
Farm [ 5 1. For completeness the procedure is reviewed in this section. 

Suppose now only output feedback is available and an observer is to be employed to estimate 
the state, then equation (1) is coupled with the following output, observer, and feedback equations: 

observer desisy. In a recent paper [8], Kazerooni and Houpt 

y = c x  (6) 

dddt = A Z  + B U  + H ( y - C z )  (7) 

Here K and H denote feedback and observer gain matrices, respectively. 
Setting u = -K z + u, in place of (8) and e = x - z, one obtains 

de/dt = ( A - H C ) e + B u ,  + Tq. (9) 

In terms of transfer functions Tzu(@ = Txu(s) - Teu(s). For recovery it is desireable to have 

TZU(s) =TXu(s) or Teu(S) = O .  
The condition Teu(s) = 0 can be described in terms of transmission properties of (1) and (7). 

A complex number 6 is called an invariant zero [l 13 of the system (1) and (6) with left zero direction 
[v' , p' ] provided 

#- -I 

and [v' , p' ] # 0. If a gain matrix H can be chosen which assigns the eigenvalues {hi : i=l, ..., n) 
of A - HC to invariant zeros ( 6 i : i=l, ..., n} of (1) and (6) and left eigenvector vi' to 
corresponding left zero direction vi' then, necessarily, 

Moreover, since the zero state response of (9) is 

j=l 

where u- v- denote right and left eigenvectors of A comsponding to he, it follows that e(t) = 0, i.e. J J  J 
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Teu = 0. Thus for recovery it is desirable to place the eigenvalues of A - HC at the invariant zeros 
of (1) and (6) and the left eigenvectors at corresponding left zero directions. 

existing computer software [5,6,7] can be used to obtain the invariant zeros and left zero directions. 
In this procedure the desired eigenstructure represents an ideal. There is no guarantee that the 
desired eigenstructure is attainable. In the design example to follow nearest attainable eigenvectors 
are computed using the methods presented in [6]. Once desired eigenvalues and attainable 
eigenvectors have been specified, the observer gain matrix can be computed using eigenstructure 
assignment methods. For further discussion on the application of this procedure see [ 31 and [6]. If 
the observer gain H(p) depends on a parameter p and H(p)/p + BW as p + - where W is a 
nonsingular matrix then a standard arguement [lo] implies that the eigenvalues of A - HC converge 
to the transmission zeros of (1) and (6). The control transfer function for the system described by 
equations (l), (6), (7), and (8) is u = - K(s)y with 

Numerical solution of (10) reduces to the solution of a generalized eigenvalue problem and 

K(s) = K ( SI - A + BK + HC )-l H. 

Let G(s) denote the transfer function associated with (1) and (7), i.e. 

G(S) = c ( S I -  ~ 1 - 1 ~ .  

In this case Doyle and Stein [6] have also shown that K(s)G(s) + KG(s) pointwise. Thus, from 

another viewpoint, it is desireable to place the eigenvalues of the observer at the transmission zeros 
of the system (1) and (6). 
Parameter insensitive control design. Here the objective is to determine the design parameters which 
minimize the sensitivity of certain performance variables while, at the same time, maintaining other 
performance variables within prescribed bounds. By introducing an appropriate penalty function, 
this problem can be formulated as a constrained optimization problem. 

In this paper, the design variables are those eigenvalues and eigenvectors of the system 
matricies A(%) - B( q, )K and A( q, ) - HC( 90 ) which may be modified in order to reduce 
sensitivity. The design parameters are the real and imaginary parts of the designated eigenvalues 
and the coordinates of the associated eigenvectors. In the design process employed herein, a basis 
for the allowable eigenvectors must be computed for each eigenvector to be modified, see equation 
(3). The coordinates of an eigenvector with respect to this basis become the design parameters that 
relate to eigenvector selection. If a desired eigenvalue is to be left unaltered throughout a design, that 
is eigensystem design freedoms are not fully utilized, then this basis need only be computed once. 

variables, those which measure sensitivity to plant variations, are to be minimized. Let s( a) denote 
a vector of such variables. In the design example presented in Section 4, s( a) will denote 
eigenvalue sensitivity to plant parameter variation. Let p( a) denote a vector of performance 
variables to be kept within prescribed bounds. The prescribed lower and upper bounds for the i th 

Let a denote the vector of design parameters. In the design procedure certain performance 
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component of p( a) are denoted by LBi and UBi, i.e. it is desired that LBi 5 p( a)i 5 UBi. Let 

Ha) be the vector whose components are defined by p(a) = max( 0, p(a),-UB., 1 1  LB.-p(a). 1 }. 

The design procedure is to choose a to minimize the performance function 

J = 1 / 2 s ( a ) ' Q , s ( a )  + 1/2F(a)Q2p(ac) 

where Q1 and Q2 denote diagonal weight matrices. Minimization of 1/2 s( a)' Q1 s( a) tends to 

reduce sensitivity while the term 1/2 fi (a)'Q2 p (a) represents a penalty on performance constraint 

violations. The designer is free to vary the weighting matrices Q1 and 4 2  in order to obtain an 
acceptable design. 

3. MODEL AND CONTROL PROBLEM DESCRIPTION. 
This work was motivated by the desire to attain flutter suppression and gust load alleviation in 

an aeroelastic vehicle. The planform of the vehicle wing with three control surfaces and three vertical 
accelerometers is depicted in Figure 3.1. State space equations for control design were obtained by 

0 
sensor #1 h 

Figure 3.1 Hypothetical Wing. 
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employing a rational s-plane approximation of the unsteady aerodynamic forces [l]. Data for the 
design and evaluation models was supplied by NASA. The state space equations are of the form 

dddt = A x  + B u  + Tq 
y = c x  

where A is n x n , B is n x r, r i s  n x 1 and C isr  x n with n =26  andr = 3. The states x are 
associated with generalized positions (3, rates (5 )  and unsteady aerodynamic forces (9, control 
surface positions (3), rates (3), and accelerations (3), and gusts (2); the variables u and q denote 
control inputs and white noise into the Dryden turbulence model, respectively; and the observations y 
are associated with vertical accelerometer measurements. The structure of the system matrices is 
depicted in Figure 3.2. The locus of system eigenvalues with variation in dynamic pressure, q, is 
depicted in Figure 3.3. Flutter onset occurs when the damping in the elastic mode becomes zero. 
The point chosen for control design is qo = 4.768 lb/in2. Other points serve as evaluation points. 
The control objective is to design feedback and observer gain mamces which stabilize the system 
over a range of values of dynamic pressure and which keep control surface deflections and rates 
within prescribed bounds. The maximum deflections and rates are set at 1 5 O  and 7400 /sec, 
respectively. The control law is to be designed so that saturation of controls does not occur for an 
input gust spectrum having an rms intensity of 12 ft/sec. 

-0 

B4 : Iu  + 

0 

Figure 3.2. Control System Structure. 

4. DESIGN EXAMPLE. 
At the design point 90 = 4.768 lb/in2, a stabilizing, minimum energy, full state feedback 

control law u = -K( 90) x was determined using linear quadratic regulator methodology, i. e. 
weighting matrices for control and state variables were chosen to be the identity and zero matrices, 
respectively, see Table A1 of Appendix A for a listing of the gain matrix., With such a control law, 
unstable open loop poles are moved to their mirror image in the left half plane while other poles 
remain unaltered. 
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1 q=4.417 lb/Sqin ." . 4.768 * 
5.141 
5.537 
6.639 + 350 1 

250 E 
150 

c 
+ 1 

? 

. * .  
0 

-200 -150 -100 -50 

* "  + 

1111 
E J O  

Figure 3.3 Locus of Open Loop Poles with Dynamic Pressure. 

At the design point the controlled system 

Wdt  = (A( 90) - B( qJK( x + r( 90) rl 
exhibits good performance and disturbance rejection properties. The rms values listed in column 
LQR of Table 4.1 indicate acceptable control surface activity and loads for a 12 ft./sec. rms gust 
velocity. In addition, the minimum singular value for the return difference matrix I + K( %) 
(sI-A(qJ)-'B(Q over the frequency range 10 I o I 300 is approximately one, indicating good 
disturbance rejection properties. 

At this design point an observer was determined by attempting to place the eigenvalues of A 
- HC at the transmission zeros of the plant, C( qJ( SI - A( &))-'B( qJ, and corresponding 
eigenvectors at the left zero directions. The open loop eigenvalues, invariant zeros and actual 
assignments are listed in Table 4.2. Here eigenvalues 1-10 correspond to position and rate 
variables, 11-15 correspond to unsteady aerodynamic states, 16-24 correspond to actuator states, 
and 25-26 correspond to gust states. The zeros fall in three categories: those with large 
magnitude, those of the same order of magnitude and those with small magnitude relative to the 
magnitude of the open loop eigenvalues. The six small magnitude zeros result from computattional 
errors and should be set to zero. Actual pole-zero assignments are listed in columns I and 11 of 
Table 4.2. The desired eigenvalues and eigenvectors for the assignment listed in column I of Table 
4.2 were made as follows: zeros of the same order of magnitude as those of the open loop poles 
(and corresponding left zero direction) were assigned to the nearest open loop eigenvalue (and 
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I 

Control 
Deflections (deg) 

Control 
Rates (deg/sec) 

Bending Moment (in lbs) 
Shear (lbs) 
Torque (in lbs) 

LQR 
.351 
.314 
.438 

41.9 
36.9 
51.6 

LoR/LTR 
.367 
.350 
.47 1 

42.8 
37.0 
52.1 

Table 4.1 RMS Performance at Design Point for LQR and LQWTR Compensators. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Eigenvalue 

-13.8+430j 

- 19.2+275j 

-1.4+194j 

-43.6+ 136j 

5.2+119.7j 

- 

- 

- 

- 

- 
-92 
-1 13.6 
-1 12 
-1 12.4 
-1 12.2 
-179.9 
- 1 25.6+287.9j 

- 1 27.4+29 1.9j 

-123.9+283.9j 

-.492 
-.497 

- 
-175 

- 
-185 

- 

zero 
-6.017+346.9j 

.lo75 

-1.040+198.2j 

.03479 
-.03479 
.000003+.17j 

-111.2 
-129.8 
- 122.2+.06059j 
- 122.2-.06050j 

- 

-.lo75 

- 

- 

-1 11.7 
00 

00 

00 

00 

00 

00 

00 

00 

00 

-.492 
-.497 

I 

-6.017+346.9j 

-. 12 -. 1 
-1.040+198.2j 

-.04 
-.02 
-.000003+.17j 

-111.2 
-129.8 
- 122.2+.06059j 
- 122.2-.06059j 

-825.6+287.9j 

-827.4+291.9j 

-823.9+283.9j 

- .492 
-.497 

- 

- 

- 

-111.7 
-879.9 

- 
-875 

- 
-885 

- 

I1 

-6.017+346.9j 
- 

-4.8925 
-5.1075 
-1.040+198.2j 

- 
-4.9652 
-5.0348 
-5.000003+. 17j 

-111.2 
-129.8 
- 122.2+.06059i 

- 

- 122.2-.06059f 
-1 11.7 
-879.9 
-825.6+287.9j 

-827.4+29 1.9j 

-823.9+283.9j 

-492 
-497 

- 
-875 

- 
-885 

Table 4.2 Eigenvalue-Zero Assignments for Observer Design. 
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eigenvector); zeros with small  relative magnitude (and corresponding left zero direction) were 
assigned somewhat arbitrarily to the nearest unassigned eigenvalue (and eigenvector); the 
remaining eigenvalues were assigned a large negative real part and the corresponding eigenvectors 
were left in the open Imp configuration. Note that in all cases the assigned eigenvalues have 
negative real part guarantying the stability of the observer. The resulting gain matrix H( %) is 
listed in Table A3 of Appendix A. 

The system with observer is described by the equations 

Wdt  = A(qJx + B(qJu  +r(qJq y =C(q& 

dddt = A(Qz  + B(&)u + H ( s ) ( y - C ( % ) z )  u =-K(%)z.  

The performance of the system with compensator is indicated by the rms values listed in Table 4.1, 

column LQR/LTR. Plots of the maximum and minimum singular values of the return difference 
matrix I + K(s)G(s) appear in Figure 4.1. 

Although the system with compensator appears to have good stability and performance 
properties the synthesized control laws are sensitive to changes in dynamic pressure. The locus of 
eigenvalue locations of A(q) - B(q) K(qJ with variation in dynamic pressure is depicted in Figure 
4.2. Note that at the evaluation points q= 5.141,5.537,6.639 lb/in2 the system matrices A(q) - 
B(q)K(s) are unstable. Additional calculations show that the matrices A(q) - H( qJC possess 

t 1 l.8b Singular Values 

t I I I I I I I I I  I I 
10 100 Frequency 

Figure 4.1. Maximum and Minimum Singular Values of Return 
Difference Matrix I + K(s1- A + BK + HC)- HC(s1- AY'B. 
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450 L I 

- -  E q=4.417 Ib/sqin .- I 
4.768 * 
5.141 
5.537 
6.639 + 

+ 

I- 

* * . .  * 
0 

+ 

-200 -150 -100 -50 0 50 

Figure 4.2 Locus of Pole Locations for LQR Compensators A(q) - B(q)K(q ) . 
0 

unstable eigenvalues for q= 5.141 and 6.639 lb/in2* It is desired to reduce this sensitivity while 
maintaining performance requirements by use of the eigenspace assignment methods discussed in 
the previous section. 

To illustrate the design procedure, a design involving only a small number of parameters is 
undertaken. The minimum energy stabilizing controller K( qJ m a l e s  the eigenstructrure of 
A( qJ in a simple manner, here the unstable eigenvalues are flipped symmetrically with respect to 

the imaginary axis while all other eigenvalue/eigenvector pairs remain unchanged. That is the 
stabilizing, minimum energy feedback control law only alters the mode shape associated with the 
open loop instability. In the design example, the closed loop eigenvalues are left in the stable 
location achieved by the minimum energy controller K( qJ and an attempt is made to reduce the 
sensitivity of this control law to changes in dynamic pressure by modifying the eigenvector 
corresponding to the unstable mode. Letting h denote the desired eigenvalue associated with the 
unstable pole, the attainable eigenvectors v and modified gain matrix KM must satisfy 

[h l -A ,Bl [ ;v ]  = 0 

In the example the dimension of Ker[h I-A, B] is three. Since ,this is a complex vector space there 
are actually six free parameters which describe the attainable eigenvectors and modified gain matrix. 
Thus the objective is to use the flexibility of eigenvector assignment to design a modified full state 
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feedback control law KM which reduces sensitivity to changes in dynamic pressure, maintains 
performance requirements and is robust with respect to model uncertainties. Although all of these 
design objectives will not be met, the example does illustrate that many of them can be achieved by 
simply modifying the mode shape associated with the unstable eigenvalues. 

The sensitivity of the unstable eigenvalue to changes in dynamic pressure is calculated from 
the formula 

a /dq = (d( A(q) - B(q)K(c&))) ids) v 1 (u' VI  

where u' and v denote left and right eigenvectors of A(q) - B(q)K(qJ corresponding to the 
unstable eigenvalue and d( A(q) - B(q)K(%)) /dq, is dh( %) /dq is estimated by the difference 
quotient (A(q) - B(q)K(qJ - (A(%) - B( 90 )K(qJ}/(q - %). The sensitivity is dh /dq = 43.88 + 
18.67j. The design procedure is to utilize the freedom in eigenvector assignment in order to 
minimize the magnitude of dh( 90) /dq subject to the stability and performance constraints at this 
value of dynamic pressure. Robustness constraints are not explicitly taken into consideration. 

Let W = [ Wl', W2']' be a basis for the ker[ hI - A, B ] where h = -5.2 + 119.7j. The 
unstable open loop eigenvalue is 5.2 f 119.7j. The attainable eigenvectors are linear combinations 
of the columns of W1, i.e. v = W1 c for an arbitrary vector c. The design parameters a = c are 
the components of an attainable eigenvector with respect to the basis W1, which is obtained using 
the SVD as described in Section 2. Here s( a) = d h/ dq. The components of the performance 
vector p( a) are a stability indicator, position and rate rms values for each controller, and wing 
bending moment, shear, and torque rms values. The stability indicator was taken taken as the 
maximum of the real part of the closed loop system eigenvalues. In our design example the 
prescribed lower bounds were LB = (-lO,OOO,O,O,O,O,O,O,O,O,O) and the prescribed upper bounds 
were UB = (0,3.7,15,15,372,372,372,3ooOO,lOOO,2OOO). The weight matrices were Q1 = 1 and 
Q2 = diag(l0000,50,50,50,25,50,50,50,50,50). 

A search over the six dimensional parameter space detexmines a desired eigenvector to 
achieve this minimum and the corresponding gain matrix K M  The sensitivity achieved at this point 
is dh( qJ /dq = 10.16 + 2.07j. The corresponding gain matrix is listed in Table A2 of Appendix A. 
To further illustrate the sensitivity reduction of this design the closed loop poles for the systems 
A(q) - B(q)KM for various values of dynamic pressure have been depicted in Figure 4.3. Note that 
stability is achieved at each evaluation point. Corresponding rms values are listed in Table 4.3. It is 
most intersesting that these results can be achieved by simply modifying the mode shape 
corresponding to the unstable mode. The maximum and minimum singular values of the return 
difference matrix I + KM C( 90 ) (SI - A( qJ )-' B( Q) over a specified frequency range have 
been graphed in Figure 4.4. This figure indicates that the robustness properties of the minimum 
energy controller have not been maintained and that a more reasonable design would include 
singular value constraints. 
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450 I 
q = 4.417 Ib/sq in .- 

350 

150 t 

4.768 * 
5.141 
5.537 
6.639 + 

.. * *  
+ 

'. 

+'* 

E- 
k m n  l a 1  l l  1 1 1  l l m l l l  

150 120 90 60 30 0 210 180 
Figure 4.3 Locus of Pole Locations for Modified LQR Compensators A(q) - B(~)KM 
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10 1 Singular Values 
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......................... .... 
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10 io0 Frequency 
Figure 4.4. Maximum and Minimum Singular Values of the Return 

Difference Matrix I + K&I - A) 
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I Although the separation principle guarantees the stability of the compensator with feedback 
I 

gain matrix K = KM and observer gain matrix H = H( qJ , instabilities still arise at off design 
points due to use of the observer gain matrix H = H( qJ. Consequently a modified observer design 
was attempted, the desired pole locations for this modified design are listed in column II of Table 
4.2 and the resulting gain matrix HM is listed in Table A4 of Appendix A . The overall 
performance of the compensator may now be evaluated. First, it should be noted that numerical 
computations verify the stability of the compensator at all evaluation points. Thus the design 
procedure, i.e. modification of the eigenvectors associated with the unstable mode at the design 
point for feedback gain matrix design and assignment of observer eigenstructure to corresponding 
system zeros and invariant directions for observer gain matrix design has resulted in a 
compensator whose stability is less sensitive to changes in dynamic pressure. However one should 
also note that the rms values for the system with compensator, see Table 4.4, indicate a high level 
of control activity at the evaluation points furthest from the design point. Further improvement in 
performance should be attainable though modification of other mode shapes and by adjusting the 
weight matrices in the design procedure to obtain an acceptable blend between sensitivity reduction 
and control activity. Plots of the maximum and minimum singular values of the return difference 
matrix I + (SI - A + BKM + HMC)-IHMC(SI - A)-lB are depicted in Figure 4.5. Again, 
robustness properties of the minimum energy controller have not been retained. 

x c  Pressure 

Control 

(de& 
I Deflections 

Control 
Rates 

Bending 

Shear (lbs) 
Torque (in lbs) 

(deg/s=) 

Moment (in lb) 

4 . 4 1 i n 2 )  

3.008 
.380 
2.43 1 

376.0 
42.66 
307.4 

24,825 
453.8 
458.2 

/ 

4.4768 
3.716 
.4394 
3.026 

465.4 
52.0 
380.6 

22,250 
484.3 

6 16.6 

5.141 
4.989 
S725 
4.06 1 

609.8 
67.10 
498.4 

27,950 
521.9 
848.5 

5.537 
5.587 
.6444 
4.5 18 

659.9 
71.38 
538.6 

29,910 
563.7 
970.4 

h.h.39 
6.506 
.9 127 
4.850 

350.8 
35.83 
285.9 

39,008 
745.3 
2143 

I Table 4.3 RMS Performance for Modified LQR Compensator dx/dt = (A(q)-B(q)KM)x. 
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Figure 4.5. Maximum and Minimum Singular Values of the Return 
Difference Matrix I + KM (SI - A + BK, + HM C)'HMC(sI-AIIB. 
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CONCLUDING REMARKS. 
A procedure based upon eigenstructure assignment to reduce control system sensitivity to 

changes in system parameters has been introduced. Through an extensive design example it has 
been shown that modification of a single mode shape can lead to a gain matrix whose sensitivity to 

parameter variation is significantly reduced. The design example also indicates that a proper blend 
must be achieved between sensitivity reduction and performance constraints. Another problem that 
needs to be addressed is the explicit incorporation of robustness requirements into the design 
procedure. Current effort involves the incorporation of explicit robustness constraints in the 
design. Additional freedoms in eigenvector assignment are being used to achieve this objective. 
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